Two projection methods for Regularized Total Least Squares approximation
نویسندگان
چکیده
منابع مشابه
Total least squares methods
1. the use of weighted norms as a measure of the data perturbation size, capturing prior knowledge about uncertainty in the data; 2. the addition of constraints on the perturbation to preserve the structure of the data matrix, motivated by structured data matrices occurring in signal and image processing, systems and control, and computer algebra; 3. the use of regularization in the problem for...
متن کاملA Regularized Total Least Squares Algorithm
Error-contaminated systems Ax ≈ b, for which A is ill-conditioned, are considered. Such systems may be solved using Tikhonov-like regularized total least squares (R-TLS) methods. Golub et al, 1999, presented a direct algorithm for the solution of the Lagrange multiplier formulation for the R-TLS problem. Here we present a parameter independent algorithm for the approximate R-TLS solution. The a...
متن کاملRegularized total least squares approach for nonconvolutional linear inverse problems
In this correspondence, a solution is developed for the regularized total least squares (RTLS) estimate in linear inverse problems where the linear operator is nonconvolutional. Our approach is based on a Rayleigh quotient (RQ) formulation of the TLS problem, and we accomplish regularization by modifying the RQ function to enforce a smooth solution. A conjugate gradient algorithm is used to min...
متن کاملEfficient Algorithms for Solution of Regularized Total Least Squares
Error-contaminated systems Ax ≈ b, for which A is ill-conditioned, are considered. Such systems may be solved using Tikhonov-like regularized total least squares (RTLS) methods. Golub, Hansen, and O’Leary [SIAM J. Matrix Anal. Appl., 21 (1999), pp. 185–194] presented a parameter-dependent direct algorithm for the solution of the augmented Lagrange formulation for the RTLS problem, and Sima, Van...
متن کاملA Fast Algorithm for Solving Regularized Total Least Squares Problems
The total least squares (TLS) method is a successful approach for linear problems if both the system matrix and the right hand side are contaminated by some noise. For ill-posed TLS problems Renaut and Guo [SIAM J. Matrix Anal. Appl., 26 (2005), pp. 457 476] suggested an iterative method which is based on a sequence of linear eigenvalue problems. Here we analyze this method carefully, and we ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2014
ISSN: 0024-3795
DOI: 10.1016/j.laa.2014.07.045